Сеть богов
Культура в книгах / Именем Зевса / Сеть богов
Страница 18

Треугольник Кнос — Делос — Халкис: одинаковые пропорции сторон. А именно: Кнос — Халкис к Кнос — Делос,

Гигантская геометрическая сеть, начинающаяся в Дельфах, связывает воедино все древнегреческие культовые места

Кнос — Халкис к Халкис — Делос и Кнос — Делос к Делос — Халкис.

Треугольник Никосия (Кипр) — Кнос (Крит) — Додона: одинаковое соотношение сторон. А именно: Никосия — Додона к Никосия — Кнос, Никосия — Додона к Додона — Кнос и Никосия — Кнос к Кнос — Додона.

Все эти треугольники подобны. И можно было бы привести еще больше поразительных примеров, только я не хочу утомлять читателя геометрией.

Используя географические карты масштбом 1:10 000, «Союз оперативных исследований» при содействии военно-географического ведомства обнаружил свыше 200 пропорций у многих равнобедренных треугольников, а также 148 пропорций золотого сечения. Тому, кто все еще говорит о случайностях, уже ничем не поможешь. Разумеется, можно провести на карте прямую линию через два города и заявить, что «случайно» линия прошла еще через один город. Однако в Греции речь идет не о каких-либо пунктах на географической карте, а исключительно о культовых местах античного мира или, вернее, доисторических времен. План, заложенный в основу данного феномена, необъятен. Но его не удалось сполна осуществить по одной важной причине. Однако придется еще немного потерпеть, прежде чем вы об этом узнаете.

«Собственно говоря, это так просто — взять и провести прямоугольные треугольники по всему ландшафту», — сказал себе профессор д-р Фриц Роговский из Технического университета Брауншвейга и отправился на поиски. В гористой местности Греции он обнаружил маленький каменный круг, а спустя некоторое время — второй. Профессор Роговский провел на карте линию через эти две точки, и она в конце концов «уперлась» в культовое святилище. Но являлось ли это решением задачки?

Нет. Слишком много из проведенных таким образом линий проходит через море. Сторона треугольника Дельфы — Олимпия — Акрополь проходит по морю около 20 километров. То же самое касается отрезка Додона — Спарта. Еще абсурдней ситуация окажется с таким треугольником, как Кнос — Делос — Аргос. Между Кносом на Крите и Аргосом пролегло 300 километров морского пространства. Такая же картина с расстоянием по морю от Греции в Смирну. Я серьезно сомневаюсь, сработает ли подобный процесс замеров на суше. Если бы мы имели дело с ровным ландшафтом, то такие измерения не были бы проблемой, но они невозможны в горной и разделенной на части множеством бухточек Греции. Вот только для чего тогда нужны маленькие каменные круги, обнаруженные профессором Роговским? Мне кажется, что они играли роль «дорожных указателей» для путешественников. В конце концов, в каменном веке дорог не существовало, а протоптанные тропинки быстро исчезали в результате бурь и наводнений.

Для современных ученых принцип «простых решений» словно медом намазан. Этот принцип наложил вето на любой другой способ мышления. Ученые не в силах вырваться из умственного тупика, потому что благодаря «простым решениям» проблема срывается с крючка. Что там дальше-то изучать? Методы, пускай даже получившие в науке статус священных, дают половинчатые ответы на любую глубоко засевшую, словно заноза, проблему. Такими ответами не удовлетворишься. Нулевое решение, каковым убаюкивает себя самодовольная наука, плавно вытекает из наших сведений о греческих математиках античных времен. Евклид, к примеру, жил в III–IV веке до Р.Х. и учился в Египте и Греции. Он написал множество книг по всему спектру математических наук, общей геометрии, включая пропорции и такие запутанные вещи, как квадратная иррациональность или стереометрия. Евклид был современником философа Платона, который время от времени еще и политикой интересовался. Так вот, Платон должен был садиться у ног Евклида и внимательно прислушиваться к его рассказам о геометрических изысканиях. Не проще ли было бы объяснить это тем, что Платон восхищался идеями гения математики Евклида и с пользой для дела применял его познания в геометрии, когда в роли политика говорил о своих построениях: Итак, что же знал сам Платон?

Страницы: 13 14 15 16 17 18 19 20 21

Смотрите также

Воззрения японцев на язык. Языковые мифы
В данной главе рассматриваются массовые представления японцев (как обычных людей, так и многих профессиональных лингвистов) о своем языке. Языковые мифы и предрассудки отражаются не только в бытовых ...

О языковой картине мира японцев
Вопрос об особенностях так называемых национальных языковых картин мира, как мы видели в предыдущей главе, не всегда ставится корректно и часто связывается с ненаучными спекуляциями, о чём шла речь. ...

Истоки римского искусства
...